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Introduction

In order to obtain the data necessary to design future aeroassisted space transfer vehicles,

NASA is currently developing the Aeroassist Flight Experiment (AFE). The vehicle used

in this experiment will be deployed from the Shuttle Orbiter (scheduled for 1996), make a

data-gathering aeropass through the upper atmosphere, and then return to orbit for pickup

by the shuttle. The primary purpose of the AFE is to obtain data in the flight regime where

chemical and thermal nonequilibrium effects dominate the shock layer, because such effects

may play a large role in the design of aeroshells for future aeroassisted space transfer vehicles.

A review of aeroassist concepts is given by Walberg. 1

The absence of applicable flight data and the inability of ground-based wind tunnels to sim-

ulate the low-density, high-energy flight environment 2,a is the impelling force which dictates

the need for the AFE. This lack of data also creates an uncertainty in the heat transfer pre-

dictions which are needed to design the AFE heatshield. Among the important factors which

must be considered in the heating predictions are both chemical and thermal nonequilibrium,

an extensive viscous region, small but finite wall recombination rates, nonequilibrium radia-

tive heating, and three-dimensional effects due to a nonaxisymmetric heatshield geometry.

Rochelle et al. 4,s have used an axisymmetric chemically reacting boundary layer code 6 to

predict heating on the forebody heatshMd of tlle AVE vehicle, llowever, a boundary-layer

method does not properly account for the viscous-inviscid interaction and entropy-layer-
swallowing effects.

Hamilton et al. r used an axisymmetric chemically reacting viscous-shock-layer code s at lower

altitudes and a Navier Stokes code 9 at higher altitudes to calculate tile stagnation point

heating rate for a typical AFE trajectory. This approach automatically accounts for viscous-

inviscid interaction effects not accounted for in the above boundary layer results. The effect

of wall slip was also investigated at high altitudes, but it was found to be unimportant for



the AFE. Although this approach,providesthe best set of heating calculationsfor the AFE
vehicle'sstagnation point it providesno information about heating for the remainderof the
forebody heatshield.

The purposeof the presentpaper is to calculate the total (convectiveand radiative) heating
over the entire forebody heatshieldof the AFE vehicle.The convectiveheating is calculated
using a three-dimensionalNavier-Stokescode (LAURA) which includesboth chemicaland
thermal nonequilibrium effects. The output from the flowfield calculation is then used to
provide inputs to a nonequilibrium air radiation code(NEQAIR) 1°to calculatethe nonequi-
librium radiative heating. Results are presentedat two points on the current Baseline5A
trajectory correspondingto the start of the primary data taking period and peak heating
(near the end of the primary data taking period).

Symbols

M
P
q
s

T

x,y,z
5

¢
O

P

Mach number

pressure, N/m 2

convective heating rate, W/cm 2

surface distance from nose along meridional plane, rn

static temperature, deg K

free-stream velocity, km/sec

cartesian coordinates (see Fig. 1), m

emissivity

meridional angle (see Fig. 1), deg

Stefan-Boltzmann constant, 5.6696x10 -a2 W/cm2K 4

density, kg/m 3

Subscripts:

c

r

req
total

w

O0

convective

radiative

radiative equilibrium
total

wall

free stream

Vehicle and Trajectory

The aerobrake on the AFE vehicle (Fig. 1) is an elliptic cone, bhmted with an ellipsoidal nose,

and raked off at an angle of 17 ° relative to the cone axis. The ellipticity of the cone is such
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as to produce a circular basein the rake plane which producesa highly three-dimensional
stagnation region. A skirt is fitted tangent to the elliptic coneat the rake plane to reduce
heating in this region. The aerobrakeis madeof a conventionalaluminum structure covered
with a thermal protection systemwith the outer layer consistingof tiles similar to thoseused
on the Shuttle Orbiter.

The vehicle is deployedfrom the shuttle payload bay. It is maneuvered to its entry atti-

tude and then driven into the outer fringes of the atmosphere at a high velocity by a solid

rocket motor which is jettisoned prior to the data-collection phase of the experiment. The

vehicle enters the atmosphere at approximately 9.9 km/sec and penetrates to a perigee of

approximately 75 km where its Velocity has decreased to 8.7 km/sec (see Fig. 2) It is then

maneuvered back into a higher Earth orbit using aerodynamic lift and is retrieved by the

Shuttle Orbiter and returned to Earth. The most important part of the mission, from a sci-

entific view point, is the entry phase from 90 km down to 75 km where several instruments

will take data.

In the current paper, the heating is calculated at two points on the Baseline 5A trajectory:

(1) peak heating and (2) the beginning of the quiescent period (see freestream flow conditions

in Table I). The quiescent period is a period of approximately 30 sec when the attitude control

jets are not fired (unless absolutely necessary to maintain control of the vehicle) so that data

can be measured with minimum jet interference.

Computational Methods

tn the present paper, convective heating to the AFE heatshield is computed using the

LAURA code and radiative heating is computed using the NEQAIII code. A brief description
of these codes is presented in this section.

LAURA

(Inot[o TM has developed a three-dimensional, Navier-Stokes flowfield code, LAITt/A (Lang-

ley Aero(lynamic Upwind Relaxation Algorithm), which includes both thermal and chemical

nonequilibrium. The LAURA code is described in detail in Refs. 11 and 12. The version of

the LAURA code used in the present paper is a three-dimensional, second-order accurate,

finite-w)lume algorithm that solves the thin-layer Navier-Stokes equations for laminar flow.

The code uses a two-temperature thermal model and an ll-species chemical model for air. l:_

The thermodynamic and transport properties are taken from Ref. 14.

The governing equations are relaxed in "pseudo" time until the solution reaches steady-state.

The treatment of the governing equations is described as point-implicit because variables at

the cell center of interest are treated implicitly, while the latest available data are used for

the left-hand-side numerics. With this strategy, updating cell-centered variables requires the

inversion of only a 16 x 16 matrix and only one level of storage.



The solutions presented in the present paper were computed with a grid of which had 64

points between the body and the outer computational boundary. The grid on the body

surface is shown in Fig. 3 where there were 42 points in the i direction and 21 points in the j

direction. The surface grid was set up in this fashion instead of in meridional planes passing

through the nose to avoid a "pole type" singularity at the nose.

NEQAIR

The NEQAIR 1° code is a nonequilibrium air radiation code that calculates the population

distribution of atoms and molecules among their states by use of the quasi-steady-state

assumption (QSS). The QSS assumes that the rates of population and depopulation of

a given electronic state are much larger than the difference between the two rates, and

the difference can be effectively ignored. Given the known population rates, the number

densities of the excited and ground states can then be calculated from the predetermined

thermodynamic state for any point in the flowfield. The NEQAIR code then calculates the

intensity of radiative emission through a line-by-line integration over the spectral region in

question.

For the purposes of this investigation, the gas was assumed to be opaque below 2000

angstroms and non-absorbing between 2000 and 15000 angstroms. Higher wavelengths were

ignored. The total global emission was then integrated over the distance normal to the wall

using the tangent-slab approximation to obtain the total radiative flux to the wall.

The data that was input to NEQAIR (the species number density and temperature profiles)

is obtained from the converged flowfield.

Approach

The forebody heatshield of the AFE vehicle is subjected to high heating on the entry phase

of the mission prior to perigee. In order to design a vehicle that can survive and perform its

mission successfully, one must accurately predict the heating environment. The conditions

are such that the flow within the shock layer is in both thermal and chemical nonequilibrium.

The surface heating is primarily convective, but the nonequilibrium radiative heating is too

large to ignore completely.

The LAURA code is used in the present paper to calculate the convective heating. Wall

slip was neglected since it has been shown _ that it is unimportant for these conditions. The

surface of the aerobrake is covered with tile, made from the same material as that used on the

shuttle orbiter, which has a small but finite chemical recombination rate. To account for this

effect, the surface catalysis results of Stewart 15 have been used in the present calculations.

Once a converged flowfield solution has been obtained, the species number density and

temperature profiles at a grid point on the body are input to the NEQAIR code and the



radiative heating at that grid point is computed. This process is repeated at every second grid

point on the body (in both directions) until the entire heatshield surface has been covered.

The radiative heating at the intervening surface grid points is obtained by interpolation.

The wall temperature used in the present analysis was the radiation equilibrium value (Tw,req)

iteratively calculated from the following equation

Tw,,_q = [(q,o,_ + q,_,r)lea] '14 (1)

where the surface emissivity e was assumed to 0.85.

The procedure for carrying out the computation was as follows:

o

.

,

.

5.

.

A initial wall temperature is assumed (usually constant or from a previous converged

solution at different flow conditions).

The LAURA code is run to obtain a flowfield solution and values for the convective

heating rate (q_,c).

Using the species-number-density and temperature profiles extracted from the flowfield

solution, NEQAIR is run to obtain the radiative heating (q_,_) at each body grid point.

This step need only be done once during the iteration process since surface temperature

has a very weak affect on radiative heating using the present uncoupled approach.

Equation (1) is now solved for a new value of wall temperature at each body grid point.

A check is made for overall convergence by comparing tile new wall temperatures with

those used in step 2.

If the wall temperature has not converged, go back to step 2 and repeat the process

with the new wall temperature.

The iteration process for wall temperature is stopped when tile maximum difference between

input (at step 2) and output (at step 4) wall temperature is approximately 50°K. This

required three passes for the results presented in the present paper.

Discussion of Results

Distribution of surface heating along meridional planes for the peak heating point oll the

trajectory are presented in Fig. 4. The vehicle was at _ = 0 °. The flow conditions for this

case is presented in Table I. On the lower portion of the body (_b _< 0 ° - Figs. 4(a)-4(f))

the heating decreases as away from the stagnation point, (s _ 0), levels out over the conical
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portion of the body and then risesagainas near the beginning of the skirt. The rise in the
heatingnear the beginningof the skirt is causedby the rapid accelerationof the flow in this
region. On the upper portion of the body (_b> 0°) the conical region decreases rapidly (see

Fig. 1) and thus the tendency for the heating to level out on the conical segment of the body

is less pronounced. The rise in heating at the beginning of the skirt is also less pronounced

than it was on the lower portion of the body.

The wall temperatures along meridional planes for this case are presented in Fig. 5. These

are the resulting wall temperatures after three iterations as discussed in the previous section.

The heating contours and wall temperature contours for this case are presented in Figs. 6

and 7, respectively.

Distribution of surface heating along meridional planes for the beginning of the quiescent

period are presented in Fig. 8. The vehicle was at ¢_ = 0 °. The flow conditions for this

case is presented in Table I. The heating follows similar trends to the peak heating results

discussed previously but the overall level is somewhat lower because the fi'eestream density
is lower.

The wall temperatures along meridional planes for this case are presented in Fig. 9. The

heating contours and wall temperature contours for this case are presented in Figs. 10 and

11, respectively.

The surface heating rates have been interpolated onto the body point locations identified in

the Aerothermodynamic Data Book 5 and these results are given in Tables II and III for the

peak heating and beginning of the quiescent period, respectively. The results are provided

in this form to assist with the heatshield design.

Concluding Remarks

The nonequilibrium convective and radiative heating rates on the heatshield of the AFE

vehicle have been computed for two points (peak heating and the beginning of the quiescent

period) on the baseline 5A trajectory. These results which are presented in both graphical

and tabular form represent the most complete set of heating calculations available for the
AFE vehicle.
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Table I. Freestreamflow conditions.

C ase

deg

Beginning of Quiescent Period 0

Peak Heating 0

p_ V_
kg/m 3 krn/sec

2.176x10 -5 9.715

3.741x10 -5 9.306

T_
oK

196.8

198.9

POO

N/m s

1.227

2.134
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